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Asymptotic Theory of Second Order Differential 

Equations with Two Simple Turning Points 

NICHOLAS D. KAZARINOFF 

Communicated by L. CESARI 

i. Introduction1. In i<)}i Langer initiated and gave the first of numerous 
contributions to what has become a sucr-»ssful theory for asymptotic expansions 
of the solutions of a differential equation with a turning point. This theory has 
been extended and applied to a great many questions by him and by others. 
An extensive list of references may be found in L. CESARI'S book, Asymptotic 
behavior and slabilily of soluiions of differential equations, Chapter IV, Springer- 
Verlag, Berlin, 1958. xj . ic   , r, ,»,,,^.-:  Lr^ 

fe~^s-|5apspw^p«js©nt a generalasymplotirth^ory^ ordinary second order 
linear differential equations7with m& simple turning joints and containing a 
jiumerically large parameter. IrrpOTtieHte*^««*»«?"«««»^ asymptotic 

/expansions with respect to compTe?AW%limOTS ol ai?rS?ntial equations of 

the form 
^ 0_A»P(U)y»O. 

We consider this equation for s in a closed, simply coflpected, perhaps unbounded 
region &, of the complex plane. We assume that fol |A|>iV and for SQ9, the 

coefficient P{s, K) is of the form% \ 

(1.2) PM)-!>,(SM ■; 

where each />, h analytic, and, most importantly, that pa[s) has precisely two 
simple zeros, a ami ß, in the interior of £?,. 

In a region which includes a turning point, i.e., a zero or singularity of pn(s), 
the solutions of the differential equation (1.1) depend upon k in so intricate a 
way as to have quite distinct asymptotic forms in different parts of the region, 
being dominant (exponentially large) in some parts and subdominant (exponen- 
tially small) in others. The asymptotic scries for solutions of (1.1) over a region 

1 This research was supported by the United States Air Force through the Air 
Force Office of Scientific Research of the Air Research and Development Command 
under contracts No. AF 18(600)-14S1 and No. AF 49(638)-»92. 3 The letters M and Ar are always to be used as generic symbols for positive 

constants. 
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which includes just one simple turning point are known and are based upon 
Airy functions [2, &]. Thus, it would appear that the behavior of solutions of 
(1.1) ov^r the entire region £?,, which contains two simple turning points, is 
obtainable by the famihar procedure of evaluating the coefficients in the depend- 
ence relations which connect solutions whose behavior is known about one of 
the turning points with those solutions whose behavior is known about the other 
turning point. Unfortunately, this evaluation is not possible in general; two 
linearly independent solutions may have the same dominant asymptotic form, 
which makes the inference of the identity of two solutions from the identity of 
their asymptotic forms invalid. Thus, a new theory is necessary if we desire to 
have uniform asymptotic expansions of solutions of (1.1) over all ä?,. LANGER [4] 
has derived the leading terms of such asymptotic expansions in the special case 
where s is a real variable on a bounded interval, />0(s) is real-valued, and ^(s) s0. 
We derive the asymptotic expansions to n -\-1 terms, where « is an arbitrary 
non-negative integer, of the solutions of (1.1) under the general hypotheses set 
forth in the first paragraph above together with some others of a more technical 
nature to be set forth later. 

Interest in the problem discussed here stems mainly from possible applications 
for the theory derived. In certain regions, the differential equations for the 
angular and radial spheroidal functions are of the type (i.1). This is also true 
of the Whittaker equation for certain configurations of its parameters. The 
spheroidal functions are important in problems concerning scattering by a prolate 
spheroid. The Whittaker functions, disguised as Coulomb wave functions, occur 
in quantum mechanics. Equations of type (i.i) are also of interest in other 
problems of wave motion and diffraction. 

We have divided the discussion below into three parts. In Part I we transform 
the differential equation (1.1) into one more suitable for analysis. We call this- 
canonical form the given equation. We then give an algorithm for the construction 
of a rclaied equation whose coefficients resemble the coefficients of the given 
equation to an arbitrarily prescribed degree. In Part II we study the solutions 
of the related equation. These involve Weber functions of large complex order 
and argument. They have been studied by ERDKLVI, KENNEDY & MCGREGOR [<3]. 
We make considerable use of their results and have shown that their asymptotic 
representations hold uniformly in arg v over a finite range of arg v, where »• is 
the order of the Weber functions ü volved. We also give an algorithm for re- 
cursively determining the terms in the asymptotic expansions of these Weber 
functions. In Part III we prove that solutions of the related equation are asympto- 
tic expansions to «-f 1 terms of solutions of the given equation, n being any 
non-negative integer. The method of proof is, as usual, to transform the given 
equation into an integral equation of Volterra type, whose kernel involves solu- 
tions of the related equation, and to solve this integral equation by the Picard 
method of successive iteration. Wc also give approximations for derivatives of 
solutions of the given equation. Our main results are stated as Theorems 1 and 3 
of §§ 12 and i). An especially interesting feature is the occurence of a demunerable 
number of characteristic solutions of the given equation. These are bounded and 
oscillatory on certain curves joining the turning points and exponentially small 
on their extensions beyond the turning points. 
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Part I: Construction of the Related Equation 
2. The given equation. The ajialysis to follow involves certain functions 

and a mapping connected with f>0{s). To simplify thoir form we adopt a nomudked 
form of the differential equation (1.1) as the basis of the sequel. This normaliza- 
tion was used by LANGER in [4, §§ 2, )]. Its adoption here will be seen to entail 
certain assumptions on p^{s). 

We consider the mapping from the given region Sj onto a region Sj of the 
;-plane defined implicitly by the equation 

(2.1) /{i*_I)Ur--j>|1(0^-o. 
+1 

An immediate question is whether or not (2.1) detines a mapping at all, and if 
so, is it a schlicht mapping? We can shew that (2.1) defines a mapping and that 
at each point of ßs it defines a locally one-to-one mapping. The function which 
is the left member of (2.1) is analytic in ; except at -) 1 and in s except at a and ß. 
Its partial derivatives do not vatysh except on the lines s~-±l and s~a or ^, 
Tims by the implicit function theorem for analytic functions, there exist in 
neighborhoods of all points of % except possibly ot and /?, analytic solutpons 
2{s) of (2.1) with inverses s{z). Further, (is/<h ~(i* —l)4/>0"*(s); and hence, 
5'(2) 4:0 except perhaps at ±1. 

We now examine what happens at the exceptional points a and ß.  A com- 
putation shows that we may write 

(2.2)       /V - i)» dt - (z - 1)« 0^)   and   f p^t} di - (s - oc)* P, (8), 
1 >, 

where Ö>, and Pj are analytic in neighborhoods of -f-1 and a, respectively, and 
neither ^,(1) nor P,(x) is zero   Thus, we may write 

(2-3) F{z, s) » (r --1) #l(x) - (.s - a) ^(s) = 0. 

where F is analytic in a neighborhood of (1, a) and neither dFl'dz nor dFjds 
vanishes at (l,a). Therefore, by the implicit function theorem, there exists a 
solution z[s) of (2.)), and hence of (2.1), with inverse s(z), which is analytic in 
a neighborhood of « and such that z[a) — 1 and s'(1)=j=o. 

In order to apulv this same technique to (2.1) at s~ß, we must assume a 
-1 ft 

normalization of the coefficient p0.  The integrals $ [P—i^dl and jp\{i)dt 
1 <B 

are independent of path provided the paths do not encircle the singularities of 
the integrands. However, it may be that the latter integral vanishes. We assume 
the contrary and choose the parameter so that8 

ft -1 

(i) jp\{t\dt** j {P- \)*dl**~\ni. 

We can now apply considerations analogous to those above to reach the con- 
clusions that (2.1) has an analytic solution 2(5) at (~1,/?) with inverse s(i 

3 We do not consider the limiting behavior of the solutions of (!.l) as the turning 
points a and ß approach each other. F. W. J OtVES has infarn,?.d the author by a 
private communication that he is examining thiü limiting behavior. 
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152 NICHOLAS D. KAtAitlKOFP; 

whose dviivttUvc s' is, nonzero at - t. H arg p0 is constant on the line segment 
joining os and ß, tla- hypothesis (i) is clearly fulfilled. This is the case treated 
by LvNGeie [■f,]', und Since, in this instance, the mapping defined by (2.1) is one 
to one on the line wginent joining « to ß, it is schlicht in an open neighborhood 
of this closed segment, 

We have shown that the implicit relation (2.1) defines a mapping from äj 
onto a region 9S and that i* defines a locally one to one mapping of some neighbor 
hood of any point of Sj onto a neighborhood of 3,. We require more than 
this and assume that 

(ii) The relation (2.1) defines a schlickt mapping 

r(,v); fy«*®;, 
withl-i.iK®,. 

Under this assumption, the change of variables 

(2.4a) s ---.■ä{J), 

{2.4b) y {*)**{-$**{*), 

where s satisfies (2.1), transforms the differential equation (l.i) into 

(2.5) S-~*%M)«-Ö. 
with 

<>(U)-p(.(2).Ä)S--f.;a{^-i;]  ('. 

where () is analytic for |Aj>A? and for :£&,.  We write 

CM)=2 ?,(;);.-'. 

d 
dz 

In particular, 
9o(')=(^-l)- 

We henceforward refer to the differential equation (2.5) as "the given equation". 

3. The first approximating equation. The analysis of the given equation 
is based upon the construction of an equation which resembles it up to terms of 
the form X~n~lOii) in the coefficient of «, where « is any non-negative integer 
andO(i) denotes a function of r and A which is bounded for 21^ and for|Jlj>iV. 
The algorithm for the construction of this related equation is similar to the algo- 
rithm of MCKELVEY given in [6]. The matter at issue in MCKELVEV'S paper 
is the approximation of solutions of an equation with a single turning point of 
order two. Such a turning point may be thought of as the confluence of two 
simple turning points so that similarities in the analyses of the two cases are 
not unexpected. 

The point, of beginning in both instances is WEBER'S equation, which may 
be written in the form 

d*V 
dt* + F = 0. 
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Differentia] Equations with Turning Points m 
We make the transformation 

and WEBER'S equation becomes 

Let a non-negative integer « be chosen once for all.  We now choose v so that 

(3.1) 

where the (arbitrary) constants c and c, are yet to be determined.  This brings 
WEBER'S equation into the form 1 

(3-2) [A4 (2a - 1) + A t + 2 c. / '1 v - 0   or   f" - R Is, A) » « 0, 
v o i 

which is our first approximating equation. 

4. The second approsmuifcmg equaSion. We next construct an equation 
resembling the given equation in both the A2 and A terms of the coefficient of u. 
Formally, this step is almost identical with the corresponding one in [6]. The 
idea is to make a change of dependent variable 

(4.1) Z ~(^v +fi1v'IX 

in the first approximating equation (5.2) and to determine the functions fi0 

and //j in such a way as to make the new differential equation in Z more closely 
resemble the given equation. By differentiating Z twice, employing (J.2) at each 
step to replace v" by Rv, and by constructing the. eliminant for t? and v' among 
the three relations conriccting Z, Z', and Z" with 0 and v', we find that the dif- 
ferenlial equation satisfied by functions Z of the lorrn (4-1) is 

(4-2) 

wherein 

(4.3a) 

(4.3 b) 

and 

(4.3 c) 

d*Z 
dz* 

//_ dZ 
Ü0 "di 

D0(i-,A) = 

no + foR + 2/'i R A"1 + /<! RiX   ft* + fh Ä/A 

2/<o 4- fh A"1 +1'1 RIX Mi + /< i'/A 

In so far as X is concerned, the functions D0 and H are bounded for |A|>AT 

with D0{z, »■) -   ' , - ,'i\^o- 
We shall •' nnine u0 and /1, by the condition that the terms in the coefficient 

y/D0 in (4.21 • Sch become infinite with A have sum As^,(«) +A?I(«'). We recall 
that the choic <ii the constant c in (J.2) is in oar hands. Now, a simple division 

• 

v 

■■     •      ■ 
--^W^g-iM^   ' 
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shows that 

(4.4) 
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D 
( -iJ + D;1 

Recallbtg the ddinition of ft from (3.2), we observe that the coefficient of A* in 
//D, is ftj. The coefficient of / may be computed and is 

c + Djl(if,oo) 2/'i<?o+/f.?o    /<I(?ö 

or 
j 2/<o /'o 

Do1 (2. 0o) [{c/'o -f 2//0/<l ^0 +/'(,//i ?o) - (f/''i ?o + 2//ö/<, ^,)]. 

Therefore, a sufficient condition that this coefficient be cqvial to qt is that ff9 

and //, satisfy the following system of differential equations: 

with boundary condition that 

A jrossible solution of this system is 

(4.5 a) //0^coshd,     /^ 

where 

(4.5b) y(z)^(.t3-1)^     argy^o   for   z>\. 

and 

sinh i* 

v ' 

(4.Sc) §(z )«fi^ 
'      J     2<P( 

—c is. 

We deduce from tliese formulas that /i0 and /q are analytic in ^ except at 
•.~ — \ provided fa is defined so as to be continuous at z ■-[. Without proper 
choice of the constant c, //0 and pi will fail to be analytic at — 1. in order to 
render them analytic there, we choose c so thnt 

(4.6) 

■HI 

J   V(s) 
ds 

+i 
ds 

.1   01 Vis) 

Then ^{- 1)=0, and & may be written in the form 

*w=/^ 2?>(s] 
'■ds. 

Provided fa is now defined so as to be continuous at — 1, this lact and computa- 
tion show that /i0 and fa are analytic throughout Bt. 

raawew» 'KU<imi**Bimsrami 
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The choice of /.•„ and //, detenninc I)0, and horn (4.5) it follows tliat 

147) /Ü-fAl»"**- 

The relations (4.7) and (4.3) and the definition (J.2) of R imply that 

(4.8) Ot[s,X) -1 T Ä M/'o/'i     fii'i - ^'jj- FiX^T^^— - | 
o 

Thus if f?, is bounded, it is clear from (4.8) that Dp is bounded away from zero 
for |/!>A' and lor t^^-  H äjis unbounded, we assume 

(iü) ü0 is hwtnicd away from zero for t£3t ami for JA!>JV. 

We obsen-e directly from (4.J) that // -D«.   Therefore, we may make the 
change of variable 

(4.9) Z^D-iZ 

to remove the first derivative term in equation (4.2).   It then takes the form 

(4.K)a) g - [Aa(.'s - 1) + A V.(-) + T(z, ?.)]C - 0, 

where 

2l\ 

The function 7" is analytic in ^ as /?, /i0, and /«j are all analytic there.  Further, 
T is analytic in A for |A|> .V; hence, we may write 

{4M) rM)=f «y^A-A 
o 

We call the differential equation (4.10a) "the second approximating equation" 
for the given equation (2.5). It is important to note the way the constants r,, 
which were introduced in (}.l), enter into the functions fy. The fy appear in 7" 
wherever R and R' do. From (4.4) and (4.}a), we observe that aside from the 
leading term I? in the right member of (4.10b), R aod R' have coefficients of 
order A1 or smaller in this right member. It follows that the constant cj occurs 
linearly in if,-, always with a coefficient of -M, and is absent from every /, with 
i<i. 

5. The related «<j«ation. We are now in a position to construct a dif- 
ferential equation whose solutions are known and whose, coefficients arc identical 
with those of the given equation up to terms of order A " l. inasmuch as this 
construction is already well known [5,6], we present only the results. 

With C standing for any solution of equation (4.10a), we set 

(5.1a) «.^Dr^-f-f), 

where 

(5.1b) 

<iM) =£«,(*) A-'. 

BM)«!^-'. 
0 

Aixh. Rational Mecb. Anal., Vol. 2 10 
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0,(1. A)« 
A    A' BS 

li A   A.   li' 

and choose the functions a, and 6y so that i» satisfies a differential equation of 
the form 

(5.2) SH^M)---^? w «= 0. 

where Q{z,k) is Ix)unded for xf-St, and lor |A}>iV. The proper choices of the 
ti/s and hf'i are: 

1 

t 

"IOO - 0,     6,(z) - ^[s] I i (r/3 - *,) - 29J 6; - q[ b0] -2-~^-, 

(5.3) and for/=--2,...,«, 

V    ^    '.9 
1 

- S (2^*-j^ + V-t-sy -• ai'l iä • 

in order to render the a;'s and i.'s analytic in Bt, the constants Cy occurring in 
their defining expressions roust be properly chosen. Tins may be done recursively 
since c,- occurs linearly in t, and is absent from each /f- with i<i. The correct 
determinations are 

1 j, l J r ■        .öv  ß.v fr        .111      ,    1»       -IT as 
^ « y j \ih - '0) j -.     cj =■■ y j [</„ - /, - 2<h be - ?s &o] 2<p . 

(5.4) and for/S2 

c, ^Y f It {?/-»+8- ^-») «»- (2?ifr,*-i + f/l */_») + (?/+»- ^) 
-i 

i(20-^s^ + ^A-ai,)-«;'j^ 
where 

v - J 

-v,;- 

We now observe that the division by D\ in (5 J a) is legitimate if ^ is bounded, 
since l\(i(oo)---!.  If SJ is unbounded, we assume 

aaai-ags^aa>at^ii^^l^gg^-^^*,M>1^^^ 
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(iv) D,[x, X) 11 bounded au-av from zero for z(£B, and for\k\>S. 
The function Ü(t. I) wliich apj^ars in equation (5.2) is a function whose specific 
form may be computed, although it is of no ioterest to us. It involves the several 
functions A, B, Q,R,qn, and j,: It is, however, important to note that QU.X) 
is analytic in / for |Aj>AtT and is anal>iic in z for tfQ,. We benceforwurd 
refer to the differential equation (S-2) as the related equation. In Part II we 
shall single out certain of its solutions and describe their behavior for *%,fS[ 
andi;.l>.V. 

Part 11: Solutions of the Related Equation 
6. Introduction. The construction just given of the related equation enables 

one to know the behavior of its solutions only as well as one knows the behavior 
of the Weber functions wlvich are solutions of the first approximating equation 
[).2). These are Weber functions of large complex order and unrestricted argu- 
ment, e.g., jDj(,_i)(jr2/l;). Their behavior is not yet completely known. ERPRLVI, 
KKNNKDV & MCGREGOR have derived the results most useful to us [.?]. They 
have established approximations to the various functions 

(M ym[x, v) - D^-müßi*****).     a - (~- ir, 

with an error involving v1. We strengthen their results by showing that their 
asymptotic representations hold uniformly in aig 9 over sectors of the {»-plane. 
We also extend their representations to asymptotic expansions, the terms of 
wliich are determined recursively by a quadrature at each step. 

We obtain the behavior of solutions of equation (3.2) by kttkig x~\ ■ s 

in the expansions for the functions (6.!). We the« determine the asymptotic 
expansions over ^ of the solutions of the related equation. These are explicit 
up to terms involving P~K While our results arc limited by the Sack of precise 
information on the structure of Weber' functions of large complex order, ap- 
proximations to terms involving r"1 are usually adequate in applications. When 
they are not, numerical methods for the calculation of the terms of the asymptotic 
expansions given in § 8 may be employed to give more precis« approximations, 

7. Domains in the ss-piane. The determination of the regions of validity for 
the approximations to solutions of the given equation, which are derived in 
Part III, depends upon the character of a function ^[x). it is defined by analytic 
continuation from its positive values on [\, 00), which are given by 

(7.1) ®{x) ** / {I1 - i)J dt = / fit) it. 
1 x 

It is shown in [3, pp. 469, 470] that 0 is a schlicht mapping of a Riemann sur- 
face X over the x-plane with brunch points at ii onto a Riemarm surface ^ 
over the ö>-plane. whose branch points are the images of the branch points in S, 

Clearly, 
(7.2) *(*) = I (* {.Ta - i)< - In [* -I- (** - 1)4]}; 

and for large jxj, 

(7. J) $W «» ± \ x3 [i + 0 {%-*)]. 
IO8 

tf^'«TO*«^w»™'ww'••t«i>'«!••*' ^^M.**^aw«*«P«WM 
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Ml 

The Weber functions (6.!) are entire funcUop* (»( thtir argument and tluir 
order.  Hence, in discussing them \vc may assume that 

(7.4)       The t-plane is cut from  - 1 to -- t and [argr-j'^.T jf,    e>0 

These assumptions enable us to avoid considerii.g more than a finite number oi 
sheets of the logarithmic Riemann surface 3- 

Ix't I, denote the .v-planc cut in accordance with (".•!) and the condition 
| arg(.v - J)j ^.T. The corresponding portion ;}, of 3 consists of two sheets joined 

along the ray arg0~O (see Fig. 1). We now 
-enffi'-zx define certain regions of i' on which the be- 

havior of the Weber functions (6.1) is con- 
veniently describable. Let the index t«, which 
appears in (6.1), have range 0, ±1. ±2, ±3, 
and let 

^^ 
x<-f,ijivx~-jr 

_''   A ; 

—4^5 

 verg &-0 
(7-5) f(AC.I') ->•#(*). 

(7.6a) 

Fij. 1. Th» mriac« 3i 

< 

•aif4mix 

Let ym be the point at infinity on 3 Jn the 
direction arg<P= — «ur —argf, and let £ be 
any positive number small enough to make 
the following definition meaningful. We define 
0^ to be the largest closed, simply connected 
region @ of X such that 

n -r E% arg£ -f'«?i ä f« — f.,       A-'JÜ), 

(7.6b)   l-t + ljäf.       «e®. 

(7.6c) l^^j^e, .r^ty, except that x — \ and a neighborhood of x-■•! may 
be in ($. 

(7.6d) Each point x in Ö may he joined to the image of ym by an analytic, 
simple curve lying in ® and on wiiich 3i| is monotone (monotone in- 
creasing from the image of ym to x if m is odd, monotone decreasing if m 
is even). 

The regions Qhm are illustrated in [3. p. 482].  In geneml, except for sectors with 
vertices «it .* —• ;t 1 and widths 2s in arg(,v±i) and the interior of the circle 
at x --- — 1 deleted by hypothesis (7.6b), each region ('Hm covers the x-plane. 
Exception occurs, for example, when w -0 and argr^-O. 

We denote by W* the reflection of W_ in the origin; that is. 

(7.7) 

Now 

(7.8) 

(*; [x\e "' x£(>>w   if   arg.v 22 0,     r!' x',' 05«,   if   argx <i o}. 

tPie'^'x) =0{x)^ J.-EJ. 

so that OiwiS1- ^w 's precisely @m plus all hut a small sector with vertex at 
.v---1 and width 2«- in arg(.r—1) of the neighborhood of .r — - f i!.)t in 05TO. 
The definitions of i\ and ©* are essentially the same as those given in [ÖL 

aRBgBWWg BfflSESSSfflEB'a 
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8. Asymptotic expansions of Weber functions. In this tcction we describe 
the asymptotic behavior of ilu- Weber functions (6.t) over the regions t**M and 
<tt*   Tli'-M- fnnrtions are solutiuns of tho transformed Weber equation 

(8.1) r*{t*~ 1) V ==0. 

Since they .;rc entire functions of ,v, y„ — yi if '« 'I (tnotl 4). The Wroiukians 
of certain pairs of these solutions are [/, p. 42j* 

(8.2a) 

(8.2 b) 

where 

(8.2c) 

and 

(8.2d) 

^'(>'«,.y^tj.*') ^ 
7t v f 

}ia ii 21 

I)' 

We henceforth adopt the convention that in formulas in which the double signs 
± or T appear, all upper si^ns or all lower .signs arc always to be used. It follows 
from (82) that any two of the four distinct solutions ym are linearly independent 
except for v ---0 and certain other integral values of v. If »' is not zero, and we 
always consider [v| to be large, the solutions ym and ym±x are linearly independent 
without exception. 

The asymptotic representations for the functions ym{x,v) involve the Airy 
function Ai(/), which is defined by the relation 

(8.3) \~t .uo^VMf") 
in which K^ i>. a modified Bessel function of the th,rd kind [.?, p. 46V].  For each 
admissible *«, the function 

i n v«. Ani (8.4) X^x.v) =rH^(-|f *(*)) Ai^^-ft«"],     v. 

has a simple asymptotic expansion for x(-($m.  Thi-; is 

x£%m,       m «0,  ±\,  ±2, ±3. 

The asymptotic series for dXjdx for A'C©,,, may be obtained from (8.5^ by 
differentiation. EuuELYi. KEXNEDY & McGSEGOR have shown that the func- 
tions (8.4) are asymptotic representations for the WHH - functions (6.1) [-3, p. 479j- 
These representations may be extended to asymptot c expansions by using the 
algorithm given by LANGER in [5] or similar algorithsns. We use LANCER'S. 

In the notation of [5], it enables us to construct certain functions a, and /3;- 

' The formuir-s in [/; appear to contain misprints. 

■ 

BnHaJaBl^^^.,t-w*l«m,"- "^mmmm? 
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which arc involved in the codficients of the asyrnptotic expansions for the Weber 
functions (6.1). With reference to equation (8.1) the defining expressions of aty 
and ßl &pedalixc.  They become: 

(8.6a) 

and for/;>2. 

',w».. AW-„',/;;;'"•'. win 

«JW-O.   AW-U, 

(8.6b) 

wherein 

(8.r,c) 

I 

*(*)**-$}    and    TO=*i(*)^(*). 

Since a,—/Jj —0, as/+»~Ai/-f J~
()
 for all ;S:0. The following order relations are 

easily established. They are important in the extension of the asymptotic 
representations in [3] to asymptotic expansions.   For |«|>A' and /SgO, 

{87) *vi*)~Oii),     and    ßt,{x)**0{x'*). 

Tlic asymptotic expansions given below extend the results in [3]. We omit 
their derivation to avoid repetition of work in [3]. Tb« a/s and ß/s are suf- 
fkiondy small at * = oo to guarantee unifonn convergence of the integrals which 
enter int.o the derivation. This is the point in the extension of the analysis in 
[3] that requires careful attention. The bounds for the error terms in our 
expansions are uniform with respect to arg v, if arg)- lies on a bounded interval. 
This also applies to the results in [<Jj, The reason for this is that the limit an 

of integration in [3, equation (4.8)] may be fixed provided args» has a range of 
length less than ar. For example, if j arg vj g« | ;-<; — ?, ö0 may be chosen as 
x~c?'-oo; and if \axgv — $3i\3s,$3t~e, a0 may be chosen as x — e'l'*'- <x. 
For each such range of argy, a bound on the integral in [3. equation (4.8)] may 
be found which is independent of arg v. It follows that for arg v bounded, bounds 
for the error terms independent of arg v can be found. This reasoning does not 
imply, however, that in the x-plane the regions of validity for the asymptotic 
expansions below are independent of argr. They are not, although in the 
neighborhood of infinity the boundaries of the regions of validity in the ]ryx- 
plane are asymptotically independent of argr. 

(8.8 a) 
ym{xtp}^cmlDt(x,v)]-ix 

X1/1 •(*,»•)*„(*.».) [1 4-0(..-'-,)l +^'(5.vv.) ^'«('.f)l 

for x ^ &m; and 

ym[x.v)**CmlD?{xtv)]-ix 
(8.8b) 

x{A*(x,*)Xm{x.v) B'ix.v) .iXm{x.9) 
v* dx + 0(r -'"')•, 
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for all x £ {A i (* - t! <«} ami | ^ {.t. f)j < .V.  In Ihtwe rtlaxiom 

(8.9a) 

{8.9b) 

and 

(8.9c) 

Üt(x.r) 

A*{s,r] yln*{x,r) \ 

A*'(x,v)-{x*~i) D*{x.v) rk[x) B*[x *)?•*   A*{x,9)+t'* B*'ix,T)\' 

i~i f-l 

The functions 0^,/?,, and A' arc defined by the relations (8.6), the functions 
Xm{x,v) are described by the formulas (8.4) and (8.5), and o,"(—I)". 

One uses the identity 

(8. so) ymix.y^ymtti**"4*.*) 

to derive the form of ym{x,v) when *£@£±f> Taken together the regicas üiw 

and 0™ {?" — 0, i 1, ±2, ±3) cover the A.-plane, each point being in two regions 
having indices which differ by 1 or ). Therefore, the expansiium> (8.8) yield the 
asymptotic behavior of two linearly independent solutions of the differential 
equation (8.i) for each x. We observe that zeros of the Airy function are not 
excluded from the region where the relation (8.8b) is fulfilled. This is the reason 
for the altered character of the error term in (8.8b) as compared with the error 
term in [5, equation (9.6)]. for example. The behavior of dyjdx may be found 
via the relation 

~iP-~*t>*~ii*)~ti**>.{x) (8.11) 

from the expansions (88). 

It is interesting to note that if r is real, all solutions of equation (8-1) are 
oscillatory on the interval ~i<x<i. This occurs since, for the configuration 
of x and v cited, 5S(f (x, v)) --0. 

9. Solutions oi the related equation. The first approximating equation (3.2) 
has solutions 

(9.1) vMiz,X) ^D^^ipXc^^z)       {m -0, ±i, ±2. ±}). 

where Dt{z) is the standard parabolic cylinder function of order v [1], and where 

(9-2) f = A--c--£ ^~/"1' 
0 

Of course, i,
w=P; if ts^m (mod 4). The formula 

(9.3) vm{s.?)^yK,{\/vztvj 

relates the solutions of equations (3.2) and (8.1). In view of this connection, 
the asymptotic behavior of the solutions vm{z,X) may now be easily described 
with reference to the .v-plane. Since 

(9.4) A- - '■ 

the transition from regions on the A-planc to their images on the ^-plane is 
elementary. 

i 

-"^WftWJWA.JnvJTff'aC-*«.*^*« r»-.««»*«*-.-'^" • 



M: NiCMO! \s I»   KAXAKJHuf»; 

By directly applytag tW tl««rv in J to equation (JJ), vre cuuM haw 
d<.H*rilk-<l thf Uhavtor olcerUin solutions ol (J.2). other than the9olutiofb> (9.1). 
on rrgirms in tli»' i-plam,* identlcaJ v\it[i ihc regions 0», and (rt*. ilourvd, the 
4\)!\tx simplincation in the dtarripticn of ilw figtons of validity of the a^yinpiotic 
i'\}tansioiis, wlikh is gained by this apf^twch, i-» offset bv an increase in dif- 
ficulty in deriving these expanuon.1», »inre njtjatum H.2> is »uperficially more 
rurnplicrth'd than equation (8.1). For this reason and Jo lake lullest adx'antage 
oi the work in [3], wr proceeded a^ wt have done. 

We compute the \Vn)nskians of tlic solution*) vm{:,}.) using the formulas [S.2}, 
(9.)), and (9.4,1.   For future reference, ihe computed values arc: 

^„•V;*-)- 

(9.5) 
y/  I'm. 'V-i 1'-'   ~ e    * 1 2/< 

ll.Tß.t*'"" 

.A « T t 

To each solution »'„,(.?,/) of equation {J.2) there corresponds, througli the 
relations (4.1), (4.0), and (S.j), a solution iim{z, /) of the related equation. The 
solutions K'm{z, ß.) may be written in terms of the function:! vm{z, A) as follows: 

(9-0) wm {z.X) ^E^z.A) vm [:, X) + t\ (*, Xj v'„ {:, A)//, 

where 

(97) 

Since 

(9.8) #>,.B', 

the linear independence of solutions -a; and te*«, depends upon that of their cor- 
respondents Vi and vm. 

For the proofs to follow it is necessary to have at hand the asymptotic 
behavior, in first approximation, as |/.j ->av, of the solutions wm{ztX) of the 
related equation together with the behavior of their first derivatives. One finds 
this behavior by considering the relations (9.6) in conjunction with the asymptotic 
expansions (8.8) and (8.5) and the relation (8.4). When j£{x, r)\siM and \x — J j <e 

(9.9a) u;n(z,X):=CmO{i).   and   KJZ.ä) ^CnO(ß). 

When j|(- x, v)\ £.M and \x -f l| <e, 

(9.9b) *„(-.*} ^C,„±iO{i).    and   w'm{z,k)-Cm±30{Xi). 

If z is bounded, a;€^«^®*±gl ||(*,f)|>M, and ^(-x,JO^A/, then 

(9.10a) r^M) =/lm^A)Ö(;.-i), 

(9.10b) ü:(:,A) ~wm{zJ)0(A}. 

where 

(O-IOc) /^(cÄ) - ri"','  h'O—""^"«f. 
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l( : is not ItomAiii. ihcn »be (unctions. H» ami /:t Crfinodi by (9,7) nuy Iw un- 
bounded In this case, th. reUtiott* lO-lua) antl i*>.IOb) arc in\-alicl. We ttKreforv 
inUttduce a bmction /*(:'( which U continuous, whirli is nonvanishing (or \:\ >.W 
ari<! equal to 1 (or \i ■ M, ,tml winch is tl»- "brgt-ui" (unftion such that (or each m 

'9.111 \b{!)Aj{:,/.)*„{:,A)\<S-\r\  i   and    6(:).,!;'(.:./i .. wLU.X) I r.V 

whnt 15-0*„ . Ot*<s a»d wh«n j,:(j,.rij>.U ami ic(- .1. v)j>3/. Thus «lun the 
n'lntini«; (9 11) apply, 

and 

(9-«2a) 

and 

(9.12b) v' f. ij ._ /l.M)0(A*) 

Part III: Asymptotic Expansioas (or Solutions of the Given Equation 

10. Final hypotheaes on i%. Our objective is to dt'trmninc the asyroptotie 
behavior throughout ^ of a pair of linearly independent solutions of the given 
equation (2.5). This will be done in the sections to follow. We first link the 
behavior of solutions of the given equation to that of solutions of the related 
equation by using the familiar method of variation of parameters. Its application 
to the given equation yields the integral equation 

(10.1) f K'a^,'»'»(') 

*'("*. ""t.') 
:     '^-^"Wdt. 

which is equivalent to the given equation in (he sense that an analytic solution 
of either one is a solution of the other. In equation (tO.f), «»„ and W;, may be 
any pair of linearly independent solutions of the related equation, w may be any 
solution of the related equation, and x* may be any point in SJ. The kernel 
in equation (10.1) is, of comse, independent of the choice of U'0 and wb so that 
a unique solution u of the given equation is determined by specifying w and s* 
in equation (10.1). 

The variables z and x and the parameters A and v are always considered to 
fulfil! the reiatums (9.4) and (9.2). Thus, given 2 and ?,, v and x are detennined. 
In order to keep the investigation to a reasonable length and to avoid further 
notational complications, we make the assumption that 

(v) jargAi^.t. 

The second of the conditions (7.4) is thereby fulfilled when \/.\ is sufficiently 
large. There is no loss of generality in assuming that the first of these conditions 
is also satisfied. In what follows we fix A once for all, with \X\ sufficiently large 
to fulfill all requirements placed upon it. 

The following lemma will be used in the discussion of solutions of (10.1). 

Lerjjma.  // 
a) eS/ is a dosed, simply connected region (whose boundary may depend upon 

a complex parameter A) , 

tfUQtmav**» ■ : . . 

:• 
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b) /(«. A) it icmitnmui unJ ln*nsi(d for : ..V a«*/ far \l\ >.V, 

c) /»'(.', f, X) it (ontinmmt JUT t£ä/t /.w id. and h* \X 

d) Ihsrt fxist a umslanl M, a point f>s/. ami a sti of fcefifiabb analytic tnnn 
oittitif the points of j/l» • *uth lha' for all :•'■.•/ 

f\K{t.lJ)l\di\':.\f. 

(hen the solution of tht inttgeal nfuation 

g(x,l) ~f{z,A} +X-'kfK{2.t.X)B{l.X)dt      lk>0) 

has the form 

a here 0(1) denoks a function of x and ?. which is uniformly bounded for z^sf and 
for\X\>$, 

T?J« hypothest?:; of the Lemma guarantee the uniform convergence of the series 
which is obtained by successive iteration of the integral equation, and from this 
the proof of the Lemma follows. 

For the Lemma to apply to the integral equation (10.1), it is necessary that 
the kernel in (lO.i) be bounded. We now make assumptions on ^ sufficient to 
establish the bouudedness of the kernel.  For each X, let 

(10.2) ätm - {z\x\z) c.®m^Cfc«}       ('« = 0, :r 1. ± 2, ± }). 

In this definition and in the sequel, when a region with subscript larger than "? 
or less than - 3 appears, the region is understood to be the null set. Because 
of the overlapping of the regions Q)M and also of the regions $*, one can show 
that ^„C^.-JVV^.I.J ('« ~0, ±1, ±2). It follows from the hypothesis (v) 
and the conditions (7.4) that we lose no generality by assuming that ^.^Ciä.^ 
and £?(fsC^s. The regions ^M cover fSt and each point of 3i is in at least two 
such regions.  Our final assumptions on ü^ are: 

(vi) Correspottding to each ra;i<m iMm, there is a point cTO such that each point 
~ C «"m }flßy J* joined to zm by an analytic curve f lying in Mn and suck thai on F, 
9J | J'S monotme (matwione increasing from JW to z if m is odd, monoiane decreasing 
from em to s if m is cvea). 

(vii) The integrals 
f Q{lJ)d( 

r 

are uniformly bounded for &£&, and for \X\ >N. 

The function Q{z, X) first appeal's in equation (5.2). The function h{t) is defined 
by the conditions (9.11). Of course, if £?, is bounded, hypothesis (vii) is auto- 
maticaüy fulfilled. 

There are certain shadow zones which must be excluded from the regions ätm 

in the discussion of subdominant solutions of the given equation. Their images 
on the .v-piane adjoin the segment — 1 < x< 0.  Their we and presence depends 
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ay *-~tr 
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ujmn 4rK X. They arc fktined a«, (otlowt; 

^. -M^Jf,. 3<{of)>^^ \H *(-'))!>A*. 

<IO.)j and the jxitli» joining : to i,, aii pas« through 

the neighborhood of ..*„ where |*( - v)! •. .V} 

The shadow zones an' excluded for the reason that the subdominant solutions 
of the given equation undergo a change in their asymptotic forms us one crosses 
into them. The presence of these shadow zones (see Fig. 1 for an example) is a 
phenomenon which has no counterpart in the discussion of asymptotic solutions 
of differential equations having just one 
turning point. 

As we have remarked, we wish to de- 
termine the asymptotic structure through- 
out &t of a pair of linearly independent 
solutions of the given equation. We first 
prove that, for each m, there exists a 
solution um which is asymptotically re- 
presented by a'm in the region 9Sm~- &'„. 
We then derive connection formulas 
among the solutions «31 from which the behavior of the solutions Mm may be 
derived for all z^Qt. Lastly, we discuss certain characteristic solutions, which 
may well be of special interest in applications of the theory. 

11. Subdomin&nt solutions when j5{±a,
I V)|>JV, For each region ^,—.9^ 

there is a solution of the gum equation which is subdominant, exponentially 
small, for zf{dtm~£^\ and 8J(CT£)>0. This solution is unique up to a constant 
factor. We now establish its existence and give its asymptotic properties. We 
assume for the moment that 2?(ÄV-.^O^.i*?«.. j. ^n equation (iO.1) Jet 
wa—ivm and«v~uWii ^-i w=wm, and let the path of integration be a curve /, 

which originates at zm. For brevity, we adopt the notation T~-£(.t:(/), s-) and 
$ ~£(x{z),v). If the curve /'should intersect one or both of the regions where 
|T(±*)I=a-^i then 9i{<7f)5aO. Thus, if we replace the subarcs of f on which 
|T(iA.-)i giV by arcs on which jr(4:*)| =#, and if we notf that on the remaining 
portion ofJT, 3J(ff.fr)S ^(OT), then we see that on the (new) path of integration 
€xp[2a{f —tj] is bounded. 

The choices just made determine a solution ?•«„ of equations (IDA) and (2.5). 
H we adopt the abbreviations 

(n'!) ^-/tfAWt^M. 
where Am{::, k) and b[z) are defined by (9.10c) and (9.11), we can rewrite the 
integral equation (KM) in the form 

(11.2) ^w-HU^^/iH^^r^^o-HwoH;^^)^''^0«^^^^. 

In writing (11.2), we have used the evaluations (9.8) and (9.5) of ■^"(u,
m,«'m + .i.i). 

The  relations  (9.10),   (912)   and   (11.1)   imply   that   for  ||(±*,r)j>A'  and 

■•—»,...»■.. III^,^,.^, i. IJ»^^,.,^^.^^.—iam,MaBv..vu"^iin^SSäiä, tg'   ' 
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ih.a .'.vp 2(7(; TI I> ixunulid on /'. All (unrtiutu in equation (112) arc c»rti- 
tinuuu». Iti virtue ol these facts and h>'pot}ir«i<i (vi) v\ s 10. tin- hypotiu-Mi» of 
tlic Lnnnia an- (ulfill't! with rmpect to «luation (11.2). Tims for :<- (.^m    .'/'„I 

itl.ii 

jc( : «(c),)*)!   • .V, ami ;/    • A". 

n i 00) 
We ran show b\ onalystb analogous to that above that this relation also li<)iii> 
for ;.'(.*„-   .'i^)   ■*„. !    In leuns of um and ;. „, the result (IM) takes the form 

(tl.l) "jU)--„(U)-,^ln     (MI>A?). 

Since   {.*m- ■'/'„)'■*„   ,    ^B,.1>   MI.4)   holds  for  all z(:[J„  ^fj   such  that 
Ut(±x(-).v)l>A'. 

Wc can use the estimates (H.4) and (1).I2) to obtain the the form of u'm{:, /) 
directly from the equation found by differentiation of (10.1).   ft is 

(11.5) 
' ,    . ' /     •,   .  .I«(:./) 0(11 

"H,(.:,/)-«•„(.-. A) +    ^^1     . 

«here the prime denotes differentiation with respeci to :. 

12. The solutions Km when !?(±.T, v)!^.V. There are two cases to be con- 
sidered: (.!■(;<•, i')j :SiV and |f {--.v, r)j ?5.V. For the moment we suppose that 
jtl^l.V. We recall that the solution »„, of the given equation and equation 
(10.1) is that, solution detennined by the choices w—wm and z+~2m in (10.1). 
the path of integration being a curve P. Wc divide F in two parts /] and r.t 
on which IrisäA7 and JTI'^A', respectively. As was done in § 11, we replace 
any part of/J on which [T(- .v)|<Ar by an arc on which |T(-.V)] ~N. We now 
write the integral equation for u,„ in the form 

(12.1) um[z) = wm{s) + / Kiz, t, k) um(t) dl + / K(z, I, A) «„(') at, 
'\ r, 

where 
vm [s) wmU (/) - wM {t) wm u (t)    ü{t. A) K{z, t, X) 

the upper or lower signs being used according as /JC.^B).f, or /]C^m.-j. 

For the sake of argument let I] ■<„.,. On /]. the behavior of «m is then 
described by formula (11.4). Using this result and the relations (9.9a), (9.10), 
and (9.12), we find that 

^(;./,/)«,„{/i ^-.riUV, f V'Od! - r-"rf)()n     Q{t,X)g-atO{\) 
\niat b*(i] ). ,..,- u dl. 

l„\ f[OH)+e 2"'0(l)]-fj;a!. b»(t) 

But ))i {or) '.<: 0 on 1], except perhaps for an arc on which W(<rr) 
by hypothesis [vii], 

■A'. Therefore 

(12.2) fh'(x,tlX)H„(t.k)4t^i^)
4 

HlWfj 



KMlWMi 

Ihfkrfrtittal KquAUMM »ith lurnm« IXiutu 147 

From tlu- rstimalc («J.^al ami Ihr wrdri rrlatjun l"«//    <>ü  •). w»- dvducc thai 
r 

I IK- cMimatr (12.2) mahli-s «<. to rewrite t<|uatioti (121) as 

"«('» 
< .. 

/ - '0(1) • / K{:.l.X) Y   
tii- 

t* 

The relation (12.J) shows that tlu- h>'poiht**i's o( thf Lemma an« fwlfiltai will. 
rrspect to ilii> equation; hence, 

(12.4) "J-./M "-(♦./) fCM^       (Ue(.t,r)|ä-V). 

Since the order relation (O.Oa) is indejxMident of ar^^r- \*ß), this result is valid 
in a full neighborhood of x — 1, or of; ~ )r//, where [f (jSA' and not just in that 
portion of Jim where jf ] S A". 

We now consider the case ^(-.xjjS.A'. This situation is more complicated. 
If, for such ;, 3f («J«) < - A', then the estimat- (12.2) no longer holds, and therefore 
we cannot determine the behavior of «<„ when |f (—*)|«siV «^ we did above for 
l»!SsW- We resolve this difficulty by showing that it is only an apparent one. 
Let us momentarily suppose that m ~J-2 and i\i [a £) g - N. 1 hen ^H (or ^ g; N 
in the neighborhood of ^w., where |f{ —*)j^A'. By the argument given in 
thfi next paragraph wc are able to determine the behavior of un.i in a full 
neighborhood of r — — } r/A, oi of .t « — 1, when- \t-{ - x)\< N. We are also able 
to determine the behavior of tim., in such a neighborhood. Similar considerations 
apply to values of m other than ± 2. Thus, we shall always hi- able to determine 
the behavior of two linearly independent solutions of the given equation in a 
full neighborhood of : — — | r/A whore j*(-,v)| :> A'. 

As promised above, we now obtain the form of »^ if j|{ v)j;>.V and if, 
for such z. M{a$)Z:: —N. To do this we replace wm{s) and «•„,,, (rj in (12.1) by 
«■'„,±1 («''■"?) and ü,

m-1(''' ""i), respectively, and similarly replace wm{l) and 
»•„, i.j (/) for T such that j r(-- x)\ < .V. in virtue of the identity (.S.IO), the analysis 
used in the derivation of (12.4) may be easily modified to yield the conclusion that 

(12.5) MU^tVt,(**•■"U)+ C:m^(,) • 

when !£(-*, >')| g A' provided that for such z, ^(ai) a- -■ A'. In (12.5) the upper 
signs are to be used if m<0, lower signs if m>(), and either if w ■• 0. As is the 
case when |||<iV, we need not impose the restriction here that i lie in Jt„r 

We need only suppose that the portion of the path of integration on which 
j£(- x)\SN is rectifiable. Tims the result (12.?) is valid in a full neighborhood 
of z = - | vjk where I i' - .v)| <, N. 

We can use the estimates of wm obtained thus far to find the form of u'm{z, A) 

when l^i^Ar or [£( —x^gSiV directly from the equation obtained by differentia- 
lion of (10.1). The results are: 

CmO{\) 
(12.6 a)       tt'm{z,i)^w'm{z,k)-i 

(12.0b)       ,4(:./) ="-;£^
ÄiU) 

in neighborhoods of z --- \ vi). and z 

(Is'^läA). 
,i-t^(»l (U(- X, V) g.V) 

\ v1:)., respectively. 



l-w NtCHOtAi I»   KAiAKIXuH 

We mtninuiic «nir mulu m » ihrmcm: 

Theorem I. I'ttJfr the hypotkaa (i) thrmtfi (\ii) and tonaptrnJimg to tach 
rtgum Mm, tht fh*ft tqtttlion (2.>) /wi n intutiim um with tht foiiatting asympMU 
hfh,ivioT ichen | X\ > X: 

a) M'hrn :\:{£m~ym) and \S{±x,f)\>N, um n exponetttially hrgt or vnall 
according as SJ(»T^)- 0 rr •'{(fT^^^o and is described by the fuTmulus (11.4) and 
(11.5). 

I.) W/ien |i - fflXlSs and \t{x,9)\£N or \i ~\rl?.\£eand \${-x, y)\ gA?. 
um is oscillatory in character and is described by the relations (12.4), (12.6a) and 
(12.S). (12.6b). respectively, provided jr/A and - jr// lie in 3tm and Ä(erf)ä--iV. 

c) // v is real, the» Hm is bounded ani oscillatory /or ~ llS x'&ism — 0, ±i, ±2. 

The regions 3fm and ym, the variables x and ^, and the parameters »• and a 
arc delincd by (in.2), (10.?) (9.4). (".S), (9.2). and (6.1), respccUvdy. The 
Junctions and constants appearing in the relations (11.4), (11.5), (12.4). (12.5) 
and (12.6) arc defined in Parts I and II. The hounds for the error torms in all 
of the estimates for solutions of the given equation which have been derived 
are uni/oim in arg A for jargAj^rr. This is so for thd same reasons as those 
cited in § C for the uniform boundedness of the error terms in the expansions 
(8.8a) and (8.8b) with respect to arg >•. 

J3, Connection formulas.  It remains to give a descriptio-u ui the solutions 
im{z,/) when |^(±.v)|>.V and whe,) z is not confined to the tpecüic region 
jfm as assumed in Theorem 1. The d'-pendence relation among three solutions M;. 
ttm, and «„^j of the given equation may be written in the form 

l.mUm+l- (13.1) ul^Altm>um + Bl 

The coefficients arc, of course, given by the formulas 

-:v.     a'^~ %^um.um^..-) >».W«+l.')' '•m       ^(«m.«« + !.') 

Since the giN-en equation lacks a first derivative term, the Wronskians in 
(I J.2) are all constants and may be evaluated at 2 —) V/A, where x -- ! and 1 = 0. 
If each of the solutions u,, um, and »w+, fulfills thi. relation (12.4), üien we may 
conclude that 

TTK, Mf) - ^(s-,.»',.) -f ck qoix-*-1}, 

where k,j—l,m, or w-fl.   Thus by relation (9.8), 

(13-3) 
: »HI' 

^'."' ~ »-ff    e ~ "T + L" Cf * ^ ^ )• *   l* r». ' w + l' 

Since vk—v^ if As; (mod 4), the relations (9.5) always suffice to give the values 
of the Wronskians in (I}-))-   The constants Cy are defined by (8.9a). 

The indices / and m for which thi fonnulas (13.1) and (IJ.}) hold depend 
upon argr; hence, the pairc of linearly independent solutions of the given equa- 
tion whose behavior can be determined over all of 9X depend upon argv.  The 

mimim^&msmmmsm&simi&sgmi&v- ^' 
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Nclrtti'H» o( UK^C luntianuntaJ jwjir* ol aolutnus nuy t>c m.uh- using nipofcin I 
and the coancction formula"* (IJ.l). Wc omit the detail» of the selection and 
■.fate only the faults. 

Theorem 2. For fach IM/H«' 0/ / JM^A /Aa/ iarg Aj ;ä-''I '^ für« t^wa/n»* (2.S) 
/us d ^air {>/ lintarly independtni %olutum$ u-lwit asymptotic behavior ovtr all cf 
Q, may bf found from Thtorem 1 ««</ the rftineetion fortnuJas {i} Vjl namely. 

0 ^J arg r < .T 

.T S» ari- »• ^ .-t T- « 

— rr < arg r Sa 0 

— n — e. ;S arg »■ Si — .T 

//!<• fundamental pair is 

!4, Characteristic solution.1;.   If i(ov— I) —A, a non-ncgaiive integer, 

ym{x.v}^c~^'^"Hk{\Ak-r2x), 

where y„(x,v) is a solution (6.1) of the transfonncd Weber equa'io'i (8.1) and 
//,(A) is the Hermite polynomial of order k. The Hermitc polynomiais are even 
or odd according to the parity of k so that when i{jv— 1)     A', 

yw(A,v)----(-i)*yn±2(-f.v). 

These facts are reflected in the behavior of the solutions cf the given equation. 
If jarg^l-ct, 

where the upper or lower signs are to be us-d according as arg v<0 or arg r>0. 
When r~-2A'-t-l, "^'(.Vo, yij) — 0. Thus, as shown by LANGER (yj, for certain 
values of / the Wronskian ^'{»o, '<.s) vanishes. These cliaractcristic values are 
countable in number and are given by the formula 

;.,--= 2M i-f-o(;.r '). 

At the ciiaracteristic values, 

u6iz. Xk) - (- 1)* tu2{:, /,) [1 + 0{).-t '-*)]. 

where the r ^eror lower signs are to be used according as arg(i'(A<)) is negative 
or positive, vu ( i it. Ma characteristic solution of the given equation. 
We can observe u.c u 1.      •• ol a characteristic solution «o^. ^*) for 
real z by referring to Theorem 1. 

Since |j"S(A»0)j <.V for values of r such that - IgiHz^ 1 an * |^-!<.V|;.t| '. 
a characteristic solution is oscillatory for z in a strip of width 0^ ) centered 
on the interval [— 1, i'j. in certain regions outside of such a strip, a characteristic 
solution is subdominant and decreases exponentially to zero as |.-r|->oo. These 
regions are sectors of width J.T-- f with vertices at z~ ±]'Xkh'(h) and which 
arc centered on the real axis. In particular, a characteristic solution is uniformly 
bounded for real z. Only characteristic solutions and their multiples have uns 
property. 

feM^w^ffer-*-1- m 



- 

IVO      N"l«iit.t ** I» KAJUhj.iio^r: Vai'iruxul i-,»\u»lwm *tih rHmtnji l\*tai» 

Refmnct» 
/j iU« HiitM/. li     Ittr kuniluen«.   hyprntromdrttelM1 I'unkliim    llrr<in-(«<Htll 

;•  CmbKV T M • linlft^ luyinpinik fitrrnaKw for luncttr»«« w^ih trafi»ttkm potnt» 
Tr^fH  ,\m«f. M.»ih  S«»c 41. 214    J^r (l«^" 

'Jj BMOU.VI. \ , M KHNNHOV «t J. Mi I;MK,«IK   i^r.iU>)a cytindcf »tine»«« R-» a( UrK>' 
unlrr   J. uf lUlliMMl Mecb. and AoaJ i. *>')   4SS (195-i). 

V] I.A.V.H«. H E.; The asymptotic ■utluiioiti» of a linntf ciifferrntial n|uai>oti <>( ütt- 
xrinul onh't w»|i n*t> turning poinu,   It.ut» Anu-r. Muih  s«» . (orthcomin(| 

.5] I-.\M.»;»4, K. K,: Tti» «-»ymptotic Milutioa« o( onlinitry limar iliKerential c«|uatiun« 
ol the Acconi) order, wiih vj-.« M! n-frrence to a turnniK pfimt.  Tran«. Anur 
Math. Sec. 67, 461—490 (IW). 

[6] McKskVRV, R. W.: The solution"« of a«cond order linear ordinary eliücrcntial 
(ilii.itinns al»ijt a turning point oi onler t««». Tnuu. Anur. Math. S«,xr  79. 
103-123 (1955). 

The University of Michigan 
Ann Arbor 

(If re five,! June 10. mS) 

Druck der UnlveniUtMlrtickeKi H. StOrti .4.r.., Wflnhur« 

a2^!?!!Z!Zir!l!-^^—"x"ara 
i.»li<MUW 

-^ 


